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The Software Chasm

Many important HPC 
applications cannot be re-
written for practical reasons:

• Size of code.

• Additional efforts of 
validating a rewrite.

• What do you rewrite to?

• Impact on budget and 
deliverables.

Moore’s law is now spurring a renaissance
of architectural diversity in the HPC 
marketplace:

• Multicore (Intel, AMD, Sun, …)
• System on a chip (IBM BlueGene, 

SciCortex, …)
• The re-emergence of vector 

(Cray,ClearSpeed,Intel, …) 
• Graphical Units to supplement work 

(IBM/Sony Cell, Nvidia, …)
What works well for one may work poorly for 
another.
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Many software options exist to port to new architectures

� A manual rewrite would lock in one solution
� Automated transformations can generate each solution

Existing 
Software

Systems on 
a Chip

System
Specific
Libraries

Multicore

Rapidmind

ArchitecturesSoftware Solutions

OpenMP

CUDA

GPU

Cell

Manual approach has 
unacceptable footprint 
in source code
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We Would Like To Leverage a Single Source Code for Many Architectures
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Motivation

� Many large science applications achieve a small 
fraction of peak performance

� Known roadblocks to performance include
• User choice of data structures
• Conservative optimization choices by compilers

� We are working on a source-to-source translator called 
TALC to allow users to control these issues for mesh 
based codes without modifying their source code
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Mesh Based Physics

� Meshes are used to solve partial 
differential equations

� Meshes are often described as 
a hierarchy of locality contexts

� Examples of contexts include: 
subdomains, patches, finite 
elements and material regions

� Data layout choices are often 
made within locality contexts to 
increase cache performance

Mesh

Elements Nodes

Concrete Copper

2D Mesh

Node

Element
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Fundamental Data Layouts

� Array-Like
• double x[10000] ;

double y[10000] ;
double z[10000] ;

� Struct-Like
• struct coord {

double x, y, z ;
} point[10000] ;

� Clustered-Struct
• struct coord {

double x, y ;
} point[10000] ;
double z[10000] ;

Memory Interleave

…

…

…x    x     x    x    x    x

y    y     y    y    y    y

z    z     z    z    z    z

…

…
x    y     x    y    x    y

z    z     z    z    z    z

…x    y     z    x    y    z
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Stress-Strain Work Example – Array-Like Layout

double quarterDelta = 0.25 * deltaTime;

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - sxx[index] - syy[index] ;

deltz[index] += quarterDelta * (vnew[index] + v[index]) *
(    dxx[index] * (sxx[index]  + newSxx[i])  +    dyy[index] * (syy[index]  + newSyy[i]) +

dzz[index] * (szz + newSzz[i]) +
2.*dxy[index] * (txy[index]   + newTxy[i]) + 2.*dxz[index] * (txz[index]  + newTxz[i]) +
2.*dyz[index] * (tyz[index]   + newTyz[i]) ) ;

delts[i] += quarterDelta * (vnew[index] + v[index]) *
(    dxx[index] * sxx[index]  +    dyy[index] * syy[index] +      dzz[index] * szz +
2.*dxy[index] * txy[index] + 2.*dxz[index] * txz[index]  +  2.*dyz[index] * tyz[index] ) ;

}
Here, each field variable occupies a separate array
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Stress-Strain Work Example – Struct-Like Layout

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - elem[index].sxx – elem[index].syy ;

elem[index].deltz += quarterDelta * (elem[index].vnew + elem[index].v) *
(    elem[index].dxx * (elem[index].sxx + materialElem[i].newSxx)  +

elem[index].dyy * (elem[index].syy + materialElem[i].newSyy)  +
elem[index].dzz * (                   szz + materialElem[i].newSzz) +

2.*elem[index].dxy * (elem[index].txy + materialElem[i].newTxy) +
2.*elem[index].dxz * (elem[index].txz + materialElem[i].newTxz) +
2.*elem[index].dyz * (elem[index].tyz + materialElem[i].newTyz) ) ;

materialElem[i].delts += quarterDelta * (elem[index].vnew + elem[index].v) *
(    elem[index].dxx * elem[index].sxx +     elem[index].dyy * elem[index].syy +

elem[index].dzz * szz + 2.*elem[index].dxy * elem[index].txy +
2.*elem[index].dxz * elem[index].txz + 2.*elem[index].dyz * elem[index].tyz ) ;

}

Here, there are two contexts – mesh elements and mat erial elements
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Stress-Strain Work Example – Clustered-Struct Layout

for (int i = 0 ; i < material_length ; i++){
int index = material_map[i];
double szz = - stress[index].sxx – stress[index].syy ;

deltz[index] += quarterDelta * (volume[index].vnew + volume[index].v) *
(    deform[index].dxx * (stress[index].sxx + materialStress[i].newSxx)  +

deform[index].dyy * (stress[index].syy + materialStress[i].newSyy)  +
deform[index].dzz * (                     szz + materialStress[i].newSzz) +

2.*deform[index].dxy * (stress[index].txy + materialStress[i].newTxy) +
2.*deform[index].dxz * (stress[index].txz + materialStress[i].newTxz) +
2.*deform[index].dyz * (stress[index].tyz + materialStress[i].newTyz) ) ;

delts[i] += quarterDelta * (volume[index].vnew + volume[index].v) *
(    deform[index].dxx * stress[index].sxx +     deform[index].dyy * stress[index].syy +

deform[index].dzz * szz + 2.*deform[index].dxy * stress[index].txy +
2.*deform[index].dxz * stress[index].txz + 2.*deform[index].dyz * stress[index].tyz ) ;

}

Here, contexts are created for each tightly bound g roup of field arrays 
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Stress-Strain Work Example – Performance

A mesh of 12000 elements contains two sparse material subsets of
8000 and 4000 elements.  The 8000 element subset is evaluated
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Stress-Strain Work Example – Cache Performance

91.1%2737535042769568352Struct-Like

91.0%2814045352842569424Intermediate

93.3%2862396973955732080Array-Like

Hit
RatioMiss CountHit Count

Data
Layout

Opteron Hardware Counters
L1 Cache

� Some applications/architectures optimize best with 
struct-like data layouts due to reduced register pressure 
or better use of prefetch streams
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Second Example – Quadrilateral Volume

� An unstructured mesh is created for quadrilaterals
• Lattice of nodes stored as X and Y coordinate arrays 
• Quadrilateral shape defined by four arrays of

nodal indices
� Wall clock run time is measured while varying

• Compilers
• Data representations (restricted pointers vs. STL)
• Data Layouts

−Separate coordinate and shape contexts
−Switch between Array-Like and Struct-Like layout 

for each context
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Quadrilateral Volume Example – Performance

Quadrilateral Volume Calculation
Restricted Pointers

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4

Data Layout Choice

T
im

e 
(s

ec
on

ds
)

Opteron/g++4.1.1

Opteron/pgi6.2-3

Opteron/path3.0

GNU sees good optimizations for 
the first and third layout, while
PathScale sees good optimizations 
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Quadrilateral Volume Example – Performance

Quadrilateral Volume Calculation
Restricted Pointers
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Quadrilateral Volume Calculation
C++ STL
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PGI sees more optimizations when 
using the STL.  Note that Pathscale
runs 25% slower when using the STL 
for data layouts number two and four.
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Struct-Like Layouts Are Not Optimal For All Architectures

� An x86 SSE enabled processor can optimize 
well with unaliased aligned array-like data
• double *x = new double[10000] ;

double *y = new double[10000] ;
double *z = new double[10000] ;

• Additional compiler directives are needed throughout 
the source code to indicate pointers are aligned
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Memory Alignment Is Important For Many Architectures

144012801000000

18301290500000

37201290100000

3720129010000

827033401000

63003040100

Aligned(MB/s)Unaligned(MB/s)Array Size

BG/L memory throughput: a[i] = b[i] + ss*c[i]

Results: Norris, Hartono, Gropp
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Compiler Directives

� Memory Alignment
• Library calls such as posix_memalign()
• Compile line options such as –Mcache_align
• Compiler directives such as

− __alignx()
− _declspec(align())
− __attribute(align())
− __assume_aligned()

� Alias control
• For C/C++ use restrict or __restrict__
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Roadblocks to Data Layout Flexibility

� Users usually must rewrite their software to switch between Array-
Like and Struct-Like data layouts or to take advantage of compiler 
directives
• This makes it difficult to adapt software to compensate for 

performance idiosyncrasies of different compilers or memory 
subsystems

• Software ends up being tuned for a specific hardware platform 
and compiler environment

� Dynamic Memory Management is often supported as a library 
rather than an integral part of the compiler
• Compiler cannot generate aggressive optimizations due to 

incomplete knowledge of data layout, memory alignment, and 
inter-relations among heap pointers
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TALC

� TALC is a source-to-source translator that allows users 
to direct compiler optimizations through the use of a 
schema file

� The schema file provides a higher level of type 
information about the problem being solved

� This enables a tight coordination between run-time 
memory allocation and compile-time code generation, 
which are currently somewhat disjoint
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TALC – Allowing User Directed Compiler Optimizations

� The Schema file contains high level information about 
data layouts

Quadrilateral Schema 1

View nodes
Field x
Field y

View

View elems
Relation:nodes n1 n2 n3 n4

View  

Quadrilateral Schema 2

View nodes
Field x y

View

View elems
Relation:nodes n1 n2 n3 n4

View  
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TALC Schema

Shock Tube Schema

View mesh
View elems

Field mass momentum energy
Field pressure
View tube

Relation:faces upWindFace downWindFace
View

View

View faces
Field flux0 flux1 flux2
Realtion:elems upWindElem downWindElem

View
View

elems

tube

inflow outflow
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TALC

� In addition to controlling data layouts via a schema file, 
source-to-source translation allows us to
• Align variables when they are allocated on heap
• Apply machine specific compiler directives to 

indicate cache alignment and alias restriction
� Features that allow this to work for us

• Consistent naming of Field arrays and contexts
• Hierarchical nature of context allocation already in 

place in many of our scientific codes
• Intimate familiarity with the structure of our codes
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Potential Roadblocks

� Libraries
• Most libraries expect passed arrays to have a 

specific memory layout (i.e. stride one array)
• Even if compiling library source code, the user would 

need to understand the structure of the library 
software to create an appropriate schema

� I/O
• Since many I/O operations are implemented using 

libraries, the same problem applies as above.
• A library like MPI that provides a memory layout 

interface may be automatically transformable



25
LLNL-PRES-403029 Lawrence Livermore National Laboratory

� Demonstration of Rapidmind backend
• Will work on select loops at first, low performance

� Full thread support
• Demonstration capability is already there

� Structured Indexsets

Future Work

Schema
View  VecSpace:row:col

Field         A
Field:row y
Field:col x

View

MVmul(is *vecSpace, PntrR y, A, x) {

while(vecSpace->(“row”)) {

y = 0.0 ;

while(vecSpace->(“col”)) {
y += A*x ;

}

}
}
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Conclusion

� A diversity of hardware architectures are being 
introduced simultaneously (Multi-core, NUMA, 
GPGPU/vector coprocessors)

� A low-impact change in our programming model may 
provide a unified way of running effectively on a 
diversity of system architectures

� A data-layout compiler has been written to explore this 
issue using the ROSE source-to-source translator


